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Abstract

Writing systems are structured to depict the various facets of
human language, from sounds to meanings. Chinese writing, as
a logographic system, offers a distinctive opportunity to study
the structural relationships between written forms and their
sounds and meanings all at once. In this companion paper to
Jiang et al. (2024), we explore a computational model based on
library learning that can capture the compositional structure of
Chinese characters and their relationship to sound and meaning.
We extend the written-only library learning framework from
Jiang et al. (2024) by incorporating written-sound joint com-
pression and distributional semantic representations. The joint
compression component allows the model to uncover struc-
tural relationships between a character’s graphical components
and its pronunciation, mirroring the function of phonetic and
semantic radicals in Chinese orthography. With distributional
semantics, the model also learns systematic links between the
graphical structure and the meaning of characters, enabling it
to predict the meanings of unseen characters based on their
constituent parts. Moreover, our model allows us to explore
historical shifts in how written Chinese has represented spoken
language. We anticipate that our library learning model to be
a unified computational account of writing’s interaction with
multi-level structures of human language.
Keywords: language learning; evolution; phonology; Bayesian
modeling

Introduction
Human language is structured across different levels of rep-
resentation, and writing is one key, permanent form of this
structure. As cultural inventions, writing systems are generally
thought to have been created to record spoken language, with
their orthographies designed to capture both the sounds and
meanings of the language (Chafe & Tannen, 1987; Sproat,
2000; Frost, 2012). But to what degree do writing systems rep-
resent the structure of both sound and meaning in language?
Moreover, what computational principles govern the structural
relations between writings and other aspects of language?

In this paper, we present a computational framework study-
ing the systematic structural relations between writing, sound,
and meaning in a language (Frost, 2012; Sproat, 2010). We
focus on one of the oldest and most widely used writing
systems—Chinese, alongside its most widely spoken Sinitic
variety, Standard Mandarin. The Chinese writing system is
traditionally recognized as logographic, and so, in contrast to
phonetic writing, each graphical symbol (character) is associ-
ated with a semantic component, such as a word or morpheme
(Gelb, 1963; Coulmas, 2003; Sproat & Gutkin, 2021). This
logographic nature offers a unique opportunity to examine the
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Figure 1: (A) Library learning represents logographic forms as
programs and discovers recurring structural patterns in char-
acters by compressing and rewriting programs. (B) Library
learning over written and sound forms discovers rules for
mapping graphical parts to sounds. (C) Our model reveals
systematicity between forms and meanings by predicting char-
acter’s meaning vector from its library function embeddings.

relation between written form, sound, and meaning within a
single language.

Inspired by recent work on leveraging library learning as an
efficiency-based (Gibson et al., 2019) computational model to
study the structure and evolution of written forms in Chinese
(Jiang et al., 2024), we develop our computational framework
based on a library learning approach. The library learning
line of work is best described in inductive program synthe-
sis contexts (Ellis et al., 2021; Bowers et al., 2023; Lake,
Salakhutdinov, & Tenenbaum, 2015); it compresses program
representations by iteratively growing libraries of program
abstractions from the program corpora. Grounded in Chinese
characters, we represent characters in program-like represen-
tations based on stroke sequences and phonetic alphabets. The
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Figure 2: Overview of our joint written-sound form joint compression model. (Left): Base DSL (Domain Specific Language)
primitives containing logographic stroke primitives and phonetic alphabet (pinyin) symbols. (Middle): Characters’ written-sound
correspondences are modeled by bind functions that take in written and sound sequences. Library learning on written-sound
programs yield high-level abstractions describing sub-grapheme to sound mappings, resembling phonemic rules in Chinese
writing systems. (Right): Visualization of a character’s written form and sound form’s joint hierarchical decompositions.

library learning model identifies recurring graphical patterns
and written form-sound bindings and stores them in a library
of abstractions. Using these abstractions, characters can be
rewritten in a compressed, hierarchical form, reflecting an
efficient organization of linguistic forms and aligning with
empirical theories on the hierarchical organization of Chinese
character orthography (Jiang et al., 2024).

We augment the written-only library learning model to
jointly model the meaning and sound, allowing us to examine
and discover the structural nature between Chinese characters
and their sounds and meanings. Our investigation is organized
into two parts. In Part I, we develop a (written) form-sound
joint compression model based on the library learning frame-
work. By identifying sub-graphemic elements predictive of
pronunciation—analogous to phonetic radicals in Chinese or-
thography, the model uncovers systematic phonetic cues em-
bedded in logographic characters. We validate these learned
form-sound relationships by demonstrating that the model can
successfully predict phonetic properties of character parts in
phono-semantic compounds.

In Part II, we extend our analysis to (written) form-meaning
systematicity at the sub-character level. We represent charac-
ter meanings as distributional semantic vectors derived from
Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013;
Mikolov, Chen, Corrado, & Dean, 2013) and model meaning
compositionality using additive transformations of learned li-
brary embeddings. Analyzing over ten thousand Chinese char-
acters, our results reveal a systematic relationship between
graphical forms and meanings, capable of predicting held-out
character’s meanings from its library learned written form
decomposition. In addition, our meaning model enables us to
investigate diachronic changes in form-meaning systematicity,
comparing the transition from Classical Chinese (Peyraube,
2016) to modern Vernacular Chinese. Our results suggest that
Chinese characters exhibit a greater form-meaning system-
aticity when encoding Classical Chinese compared to when

representing modern spoken Mandarin.
Overall, our findings demonstrate how a unified computa-

tional framework based on library learning can capture the
compositional nature and structural relationship between writ-
ten form, meaning, and sounds in the Chinese language. More
broadly, leveraging Chinese writing as a unique testbed, this
framework may offer new insights into how efficiency shapes
a writing system’s role in representing the structure of human
language and help us reverse-engineer how writing systems
reflect human intuition about language structure, driven by
efficiency principles.

Part I: Sound
While Chinese is traditionally classified as a logographic sys-
tem, phonetic cues remain deeply embedded within its charac-
ters, particularly in phono-semantic compounds. However, the
extent to which written forms encode sound at a sub-character
level remains debated. In this section, we develop a computa-
tional framework that jointly compresses written and sound
representations, revealing underlying phonetic regularities. By
leveraging this library learning approach, we identify system-
atic mappings from graphical components to sounds that align
with empirical theories on phono-semantic compounds.

Methods
Preliminary: Library learning on logographic forms Our
library learning model is built on top of Jiang et al. (2024)’s
model on Chinese logographic forms. In a few words, the
library learning model represents individual logographic char-
acters in a writing system W as program sequences pchar of
stroke primitives {T, N, ..., HZZP}⊂Lbase. The library
learning model discovers recurring patterns fn in charac-
ter programs, adds recurring pattern programs to a library
L =Lbase∪{fn}, and rewrites character programs in the most
efficient and compressive way (efficiency measured in mini-
mum description length C(W )). We define the objectives used



to discover the recurring patterns in eq. (1).

DLL (W )=

description length
of the rewritten characters︷ ︸︸ ︷

∑
p∈PLbase (W )

DL(REWRITE(p,L)) +

description length
of the library︷ ︸︸ ︷

DL(L)

DL(L)= ∑
fn∈L

DL(BODY(fn))

C(W )=min
L

DLL (W )

(1)

We refer the reader to Part I of Jiang et al. (2024) for further
details of the library learning model. To help build intuition
about the computational framework, we will use an example of
three characters {侗,洞,汹} throughout our paper. The initial
programs under the base DSL Lbase are defined as follows:

p侗 := (#0 P S S HZG H S HZ H),

p洞 := (#0 D D T S HZG H S HZ H),

p汹 := (#0 D D T P N SZ S).

(2)

We represent characters as sequences of strokes, en-
coded in DSL (domain specific language) primitive symbols
shown in fig. 2 left. From the base stroke programs (2), the
model identifies recurring stroke patterns 同 fn 0(#0) :=
(#0 S HZG H S HZ H) and 氵 fn 1(#0) := (#0 D D T).
By adding these pattern programs iteratively to the library
L =Lbase∪{fn 0,fn 1}, the algorithm rewrites the base pro-
grams with reference to the patterns learned in L :

REWRITE(p侗,L)= (fn 0 (#0 P S)),

REWRITE(p洞,L)= (fn 0 (fn 1 #0)),

REWRITE(p汹,L)= (fn 1 #0 P N SZ S).

(3)

In practice, when scaling our tiny example to thousands
of Chinese characters, the library learning framework would
also discover radicals 亻 (fn 2) and 凶 (fn 3), yielding
new rewrites REWRITE(p侗,Lwritten)= (fn 0 (fn 2 #0))
and REWRITE(p汹,Lwritten)= (fn 3 (fn 1 #0)). By apply-
ing library learning to a large set of Chinese characters, the
learned library functions and the rewritten character programs
are able to capture the hierarchical written form structure in
Chinese characters (Jiang et al., 2024; Myers, 2019).

Joint compression of written and sound forms Jiang et
al. (2024) demonstrated that a library learning model can
faithfully capture the hierarchical structure within Chinese
characters. Here, we extend the written-form-only model to
jointly model written and sound forms. For sound form rep-
resentations, we utilize Pinyin (also known as the Chinese
phonetic alphabet, see L. L. Chen (2016) for an introduction)
to encode sounds. In our {侗,洞,汹} example, pronuncia-
tions are 侗 (dòng), 洞 (dòng), 汹 (xiōng). Similar to how
we encode stroke sequences, we use the same Lisp-like gram-
mar to encode phonetic alphabet primitive sequences (e.g.,
pdòng := (#0 t o n g), note that we omit tones for simplic-
ity, see fig. 2 for more examples). To characterize written and
sound form mappings, we use an additional DSL function

(bind #written form #sound form) that intuitively links
written and sound representations in a single joint program.
We represent the joint programs for {侗,洞,汹} as follows
(note we already rewrote part of the joint program with library
functions learned on written forms for efficient compression):

p侗, dòng := (bind (fn 0 (fn 2 #0)) (#1 d o n g)),

p洞, dòng := (bind (fn 0 (fn 1 #0)) (#1 d o n g)),

p汹, xiōng := (bind (fn 3 (fn 1 #0)) (#1 x i o n g)).

(4)

We follow the compression objectives defined in eq. (1),
but now instead of compressing only logographic forms (e.g.,
programs (2)), we compress joint programs (e.g., programs
(4)) to find recurring patterns between logographic written
forms and sounds. From this example, we can get library
functions Ljoint =Lwritten∪{joint 0,joint 1} and rewrit-
ten programs (5). New library functions learned from com-
pressing joint programs resemble phonetic abstractions and
rules for mapping graphical parts to phonetic abstractions.
For example, joint 0(#0,#1) := (bind #1 (#0 o n g))
resembles the Pinyin coda (final) ong /UN/, joint 1(#0) :=
(joint 0 d (fn 0 #0)) represents the rule of mapping rad-
ical同→ dong.

REWRITE(p侗, dòng,Ljoint)= (joint 1 (fn 2 #0))

REWRITE(p洞, dòng,Ljoint)= (joint 1 (fn 1 #0))

REWRITE(p汹, xiōng,Ljoint)= (joint 0 (x i) (fn 3 (fn 1 #0)))

(5)

Another challenge for modeling the written-sound relation-
ship is the presence of polyphonic characters in Chinese. In
other words, some Chinese characters have more than one pro-
nunciation. During our library learning process, we optimize
the most compressive written-sound mappings. For example,
for the Chinese character都, which has two pronunciations
dū and dōu, we model the description length of the rewritten
character as min

sound∈{dū,dōu}
DL

(
REWRITE(p都,sound,L)

)
.

Results
Joint compression reveals mappings between written and
sound forms at a sub-character level We applied our joint
compression model on 12,085 Chinese characters together
with their pronunciations (16,316 joint programs considering
polyphones). The 12,805 characters cover most of the set of
characters used in describing the Chinese Wikipedia (12,805
out of 14,710, Wikipedia Contributors (2025)), excluded ones
are due to the lack of ground-truth raw stroke programs.

Our library learning model discovered 1,825 library func-
tions representing higher-order abstractions in written forms;
these written-form abstractions resemble radicals discovered
by Jiang et al. (2024). Additionally, our joint compression of
written and sound forms yielded 1,923 sound-related abstrac-
tions.

By detailed examination of the 1,923 library functions
learned, we identified highly interpretable semantics from
the learned abstractions. In particular, 376 library func-
tions are coda-like abstractions from phonetic alphabets



Table 1: Examples of learned library functions from joint compression, ordered according to their frequency of usage
(and their percentile rank). Beta normal forms (in lambda calculus expressions, see Alama and Korbmacher (2024) for a brief
introduction) can be interpreted as a flattened version of hierarchical library functions.

Library function discovered (beta normal form) #Uses (percentile) Semantic Example usage

joint 0(#0,#1) := (bind #1 (#0 n g)) 2585 99.90% ng (coda) 唔 (ńg)嗯 (ńg)哼 (hēng)哽 (gěng)(λ (bind $0 ($1 n g)))
joint 13(#0) := (joint 0 (#0 i)) 511 99.10% ing (coda) <intermediate abstraction>
(λ (bind $0 ($1 i n g)))
joint 22(#0) := (joint 5 (#0 u)) 460 98.80% un (coda) 轮 (lún)遁 (dùn)蹲 (dūn)囷 (qūn)(λ (bind $0 ($1 u n)))
joint 63(#0) := (joint 13 (#0 l)) 73 95.60% ling (syllable) 另 (lı̀ng)磷 (lı́n)釘 (dı̄ng)翎 (lı́ng)(λ (bind $0 ($1 l i n g)))
joint 64(#0) := (joint 22 (#0 y)) 79 96.40% yun (syllable) 運 (yùn)运 (yùn)尉 (yùn)盾 (yǔn)(λ (bind $0 ($1 y u n)))
joint 188(#0,#1) := (joint 63 #1 (fn 213 #0)) 29 87.80% 令→ling 令 (lı̀ng)冷 (lı̌ng)零 (lı́ng)岭 (lı̌ng)(λ (bind (fn 213 $1) ($0 l i n g)))
joint 245(#0,#1) := (joint 28 #1 (fn 136 #0)) 20 85.10% 俞→yu 瑜 (yú)喻 (yù)俞 (yú)愉 (yú)(λ (bind (fn 136 $1) ($0 y u)))
joint 810(#0,#1) := (joint 326 #1 (fn 191 #0)) 9 70.80% 圭→wa 娃 (wá)洼 (wā)蛙 (wā)哇 (wā)(λ (bind (fn 191 $1) ($0 w a)))
joint 546(#0,#1) := (joint 104 #1 (fn 718 #0)) 8 68.50% 累→luo 螺 (luó)漯 (luò)骡 (luó)騾 (luó)(λ (bind (fn 718 $1) ($0 l u o)))
joint 892(#0,#1) := (joint 412 #1 (fn 600 #0)) 5 49.60% 朔→shuo 溯 (shuò)朔 (shuò)搠 (shuò)鎙 (shuò)(λ (bind (fn 600 $1) ($0 s h u o)))
joint 1494(#0,#1) := (joint 235 #1 (fn 1233 #0)) 4 30.40% 妾→sha 接 (shà)霎 (shà)翣 (shà)唼 (shà)(λ (bind (fn 1233 $1) ($0 s h a)))
joint 1447(#0,#1) := (joint 64 #1 (fn 579 #0)) 3 23.10% 軍→yun 暈 (yūn)惲 (yùn)韗 (yùn)(λ (bind (fn 579 $1) ($0 y u n)))
joint 1828(#0,#1) := (joint 187 #1 (fn 21 (fn 780 #0))) 2 2.10% 灬+丞→zheng 蒸 (zhēng)烝 (zhēng)(λ (bind (fn 21 (fn 780 $1)) ($0 z h e n g)))

or syllables in Chinese sounds. We selected and inter-
preted a subset of sound-related library functions and vi-
sualized them in Table 1 for reference. In the exam-
ple shown, joint 0(#0, #1) := (bind #1 (#0 n g)) and
joint 13(#0) := (joint 0 (#0 i)) are two of the most fre-
quently used library functions discovered, resembling the Chi-
nese coda ng /N/ and ing /iN/. Moreover, phonetic library
functions are also hierarchically structured, as syllables are
composed of simpler initials and codas (e.g., joint 63 ling is
composed of joint 13 ing + l l).

The remaining 1,547 library functions depict sub-grapheme
to library functions depicting sub-grapheme to phonemes map-
pings at multiple levels. In Table 1, we notice that library
functions describe interpretable logographic parts to sound
mappings. The logographic parts involved in the library func-
tions intuitively correspond to phonetic radicals in Chinese
characters (DeFrancis, 1986). For example, in娃 (wá, baby),
洼 (wā, swamp), 蛙 (wā, frog), and 哇 (wā, wow), they all
have the same圭 part that can be attributed to the source of
their sounds – wa. The圭 part is thus identified as a phonetic
radical that contributes to the pronunciation in characters. Of
note, a phonetic radical does not always contribute to charac-
ters’ sounds in Chinese:圭 can appear in佳 (jiā, good),卦
(guà, divinatory diagram) and itself as a standalone character
圭 (guı̄, sceptre), they all differ from the sound wa as expected.

Library learning discovers phono-semantic compounds
In the previous section, we intuitively found sub-grapheme to
sound patterns in our library-learned functions. Inspired by
the widely developed theory of phono-semantic compounds in
Chinese characters (Hsiao & Shillcock, 2006; Myers, 2019),
we further quantitatively evaluate the validity of our library
learning model in identifying phonetic parts in phono-semantic

compounds. As we demonstrated in the圭 example, phono-
semantic compounds are highly irregular and inconsistent
(Zhou, 1978), it remains challenging to attribute phonetic
parts.

We collected phonetic regularity data of Chinese charac-
ters from the Hanzipy library (Synkied, 2023). We retained
characters that can be decomposed into two graphical parts
both by the Hanzipy library and our model, resulting in 3,598
phono-semantic compounds as our ground truth to compare.

To identify the phonetic part in graphical forms, we lever-
age our joint compression model by rewriting written-sound
programs with learned library functions. Based on the rewrit-
ten outcome, we further analyzed the library functions used
in rewriting the joint programs: if a written-form abstraction
appears in one of the used sound-related library functions, then
the graphical part corresponding to the written-form abstrac-
tion is likely contributing to the character’s pronunciation, or
in other words, the part is a phonetic radical. To help under-
stand this, we take the娃 (wá, baby) character and its sound
as an example.

Our library learning model encodes娃 (wá) as p娃, wá :=
(bind (#0 PD P H H S H H S H) (#1 w a)). We write
p娃, wá with Ljoint yielding REWRITE(p娃, wá,Ljoint)=
(joint 810 (fn 54 #0) #1), where fn 54 is the left part
of 娃–女, fn 191 is the right part 圭, joint 326 is the
syllable abstraction wa.

We identify the key library function used for the mapping
from written to sound is joint 810(#0,#1) := (joint 326
#1 (fn 191 #0)). It binds form圭 and sound wa. The other
part of娃–女 is not involved in the mapping function. Hence,
our model acknowledges圭 as the phonetic part and女 as the
semantic part in the phono-semantic compound娃.

By scaling up our analysis on 3,598 phono-semantic com-



pounds, our library learning model correctly predicted pho-
netic and semantic attributions with a well-above-chance ac-
curacy of 72.9% (2,624/3,598). These findings suggest our
model can faithfully capture the highly irregular and inconsis-
tent patterns between logographic parts and sound forms.

Part II: Meaning
Our results from Part I demonstrate that a library learning
model can effectively capture both the combinatorial structure
of written forms and the systematic mappings between written
and spoken forms. In this section, we aim to further advance
the model’s capabilities for structure discovery by examining
the relationships between the learned library functions and
their associated meanings. We leverage distributional seman-
tic meaning representations and additive compositionality of
vector meanings to demonstrate that characters’ meanings can
be effectively predicted from their constituent library func-
tions. By testing the predictability of characters, our model
assesses the form-meaning systematicity in Chinese charac-
ters and reveals historical changes in the relationship between
written and spoken language.

Methods
Modeling meanings of characters and library functions
Following common practices in modeling meaning system-
aticity (Pimentel, McCarthy, Blasi, Roark, & Cotterell, 2019;
Gutiérrez, Levy, & Bergen, 2016; Piantadosi et al., 2024),
we represent and extract meanings by taking vector repre-
sentations of Chinese characters with a distributional seman-
tic model, Word2Vec’s CBOW (Continuous Bag-of-Words)
(Mikolov, Chen, et al., 2013). For the implementation of
CBOW, we use fastText (Joulin, Grave, Bojanowski, &
Mikolov, 2017) to train our character embedding models.

We define a Chinese character c ’s distributional seman-
tic vector representation as vvv(c) ∈Rd . In practice, we trained
a CBOW model with d = 300 on the traditional Chinese
Wikipedia corpus (Wikipedia Contributors, 2025) tokenized at
the character level. The Wikipedia corpus contains 863M Chi-
nese character tokens (14,710 unique characters) for training.

For modeling library function’s meaning, we draw inspira-
tion from Mikolov, Sutskever, et al. (2013); Bonandrini et al.
(2023); Marelli and Baroni (2015) on distributional semantic
representation’s additive compositionality. Our library func-
tion vector representations are learned from additive supervi-
sions. We learn library function embeddings uuu(i) by predicting
a character c’s embedding v̂vv(c) from its rewritten program
REWRITE(pc,L)’s constituent library functions (eq. (6)).

v̂vv(c)=
∑i∈REWRITE(pc,L) uuu(i)

∥∑i∈REWRITE(pc,L) uuu(i)∥2
(6)

We train library embedding vectors uuu(i) by minimizing the
MSE loss between predicted character vectors v̂vv(c) and CBOW-
learned character vectors vvv(c): LMSE =

1
n ∑c∈Wtrain

(vvv(c)− v̂vv(c))2

using gradient descent. We randomly select 80% of all avail-
able character programs W (as specified in Part I) as the
training set Wtrain and 20% as the test set Wtest.

Measuring form-meaning systematicity We measure sys-
tematicity as the degree to which we can predict the meaning
of a Chinese character from the decompositions of its written
form. Based on our distributional semantic modeling method,
the systematicity of the form-meaning corresponds to the per-
formance of predicting the meaning of the character from the
meanings of its constituent library functions in its form.

We report the predictability of character meaning vvv(c)

from its form decompositions in ranking terms. Specifi-
cally, we calculate the cosine similarity between the pre-
dicted meaning vector and the ground-truth: cos(v̂vv(c),vvv(c))=

v̂vv(c)·vvv(c)
∥v̂vv(c)∥∥vvv(c)∥

. We report the average cosine similarity in the test

set 1
|Wtest| ∑c∈Wtest cos(v̂vv(c),vvv(c)), and the relative hit rate P@1

(exact match), P@10, P@100, we define P@k as follows:

P@k= 1
|Wtest| ∑

c∈Wtest

I
(

Rank
(

cos(v̂vv(c),vvv(c)),
{

cos(v̂vv(c),vvv(i))
∣∣ i∈Wtest

})
≤ k

)
,

where I is the indicator function, Rank(·, ·) calculates a ele-
ment’s ranking index in a list (in descending order).

Results
Predictable relations between character and sub-character
meanings We evaluated the characters’ meaning predictabil-
ity with a Wikipedia-trained Word2Vec model as the source
for ground-truth meaning vectors. We report five-fold cross-
validation (9,668 characters for training, 2,417 characters for
testing) results in Table 2.

Table 2: Quantitative evaluation of Chinese characters’
(written) form-meaning systematicity, based on the meaning
predictability. We report the average cosine similarity between
the predicted meaning vector and the ground-truth character’s
meaning vector. Relative hit rates P@k represent how much
percent of the ground truth character falls into the k-nearest
neighbor of the predicted vector.

Model Similarity P@1 P@10 P@100

Library learning 0.169 3.81% 13.33% 36.31%
Random decomposition 0.022 0.02% 0.45% 4.27%

Our results show that library-learned decompositions of
Chinese characters lead to highly predictable meaning compo-
sitions compared to a random decomposition baseline. Table 3
demonstrates three successfully predicted characters and three
failed cases. We found that highly predictable characters gen-
erally have one semantically transparent radical (e.g.魚 /鱼
fish,钅 iron,疒 sickness,鳥 bird).

Phonetic radicals contribute less to character meanings
To quantitatively test how semantic radicals affect meaning
systematicity, we performed a simple ablation by removing
phonetic radicals. In detail, we identified written-form library
functions that associate with sounds (from Part I), and substi-
tuted all phonetic-related library functions with a placeholder
function fn sound. We re-trained the constituent library func-
tion embeddings and evaluated how removing these library
functions impacts meaning systematicity.



Table 3: Examples of predicting characters’ meaning from
their learned library constituents. We show three success-
fully predicted characters and three failure cases, sorted by the
cosine similarity between the additive predicted vector and the
ground truth character’s meaning vector. Predicted character
shown is the nearest neighbor of the predicted meaning vector.
Identifiable library functions’ graphical illustrations and their
approximate english meanings are also marked for reference.

Constituents Predicted Ground-truth Similarity

fn 111 (鱼, fish), fn 837 (沙, sand) 鲨, shark 鲨, shark 0.757
fn 728 (矣, done), fn 0 (口, mouth) 唉, sigh 唉, sigh 0.593
fn 519 (也, also), fn 54 (女, female) 她, her 她, her 0.530

fn 13 (旦, dawn) , fn 239 (少, few) 眸, eye 省, save -0.239
fn 82 (立, stand), fn 20 (扌, hand) 扔, throw 拉, pull -0.161
fn 5 (土, earth), fn 1443 (刑, penalty) 肇, cause 型, type -0.145

A total of 225 phonetic-related logographic library func-
tions were removed. For comparison, we also performed a
baseline study by randomly removing the same number of
library functions (table 4). We found phonetic library func-
tions (phonetic radicals) contribute less to character’s meaning
systematicity than the average. This result further validates the
library learning model’s ability in capturing written-sound and
form-meaning relationships in a unified view.

Table 4: Phonetic library function’s contribution to mean-
ing. We compare between removing phonetic library functions
and random removal on impairing the predictability of charac-
ter’s meaning. Phonetic library functions has minimal impact
on meaning predictions.

Model Similarity P@1 P@10 P@100

Full 0.169 3.81% 13.33% 36.31%
Phonetic removal 0.171 3.43% 12.71% 35.81%
Random removal 0.165 3.37% 11.99% 28.73%

Classic Chinese character’s meaning is more predictable
than Vernacular (Modern) Chinese In the history, there
was an increasing gap between written and spoken Chinese
during the imperial China eras. In simple words, the spoken
Chinese language evolved much faster than the written Chi-
nese. The old written Chinese (also called Literary Chinese)
was used and designed to represent classical Chinese instead
of the spoken forms that people use everyday (Peyraube, 2016).
However, this huge gap was not bridged until the New Cul-
ture Movement (or, more specifically, the Written Vernacular
Chinese Reform (Chow, 1960)) in the early twentieth cen-
tury. During the Written Vernacular Chinese Reform, scholars
tried to modify the Literary Chinese scripts to make it close
to Beijing Mandarin by modifying the sounds and grammar
in the writing, while keeping most written character forms of
Literary Chinese unchanged (P. Chen, 1999; Wei, 2014).

Given this historical sociolinguistic background, Chinese
characters were designed for the Literary Chinese writing sys-
tem and represent the meaning of the Classic Chinese language.
Inspired by Jiang et al. (2024)’s analysis on the deliberate sim-
plification from tradition to simplified Chinese has broken
the consistency of the form structures across characters, we
similarly hypothesize that the deliberate Written Vernacular

Chinese Reform may break the (written) form-meaning sys-
tematicity of the Chinese writing system at a character level.

To validate this hypothesis, we compared the form-meaning
systematicity of Chinese characters in two different versions of
the Chinese language. We employed the四庫全書 (Complete
Library of the Four Treasuries, the largest imperial Chinese
encyclopedia (Egan, 2001)) for modeling Classic Chinese
meanings and Chinese Wikipedia for modern Chinese.

We trained two Word2Vec models on the two different ver-
sions of Chinese. The四庫全書 used is at the same order of
magnitude (690M Chinese character tokens) compared to the
Chinese Wikipedia corpus (863M). We used characters that
appear in both versions of Chinese, resulting in 10,037 charac-
ter programs encoded, and 1,625 library functions learned by
applying the library learning model on the character programs.

Table 5: Diachronic comparisons of (written) form-
meaning systematicity between classic and Modern Chi-
nese, measured by using the same set of traditional Chinese
characters but different meanings.

Script Similarity P@1 P@10 P@100

Classic (Siku Quanshu) 0.2259 9.75% 29.97% 62.70%
Modern (Wikipedia) 0.1423 2.30% 10.67% 32.48%

In a character-meaning predictability analysis (table 5), we
observed that Chinese characters exhibit a higher degree of
(written) form-meaning systematicity when describing Classic
Chinese compared to modern Chinese.

Discussion
In this work, we extend an efficiency-based library learning
framework to investigate the structural relationships between
writing, sound, and meaning. In the first part of our study,
we model logographic characters and their pronunciations
as structured program-like representations over stroke primi-
tives and phonetic alphabets. Leveraging joint compression,
our framework uncovers sub-graphemic mappings between
written and phonetic components and the structure of phono-
semantic compounds in Chinese writing. In the second part,
we examine the relationship between written forms and mean-
ings within Chinese characters. We formulate form-meaning
systematicity as additive compositionality within a semantic
embedding space, revealing predictable links between a char-
acter’s logographic structure and its meaning. A diachronic
analysis of Classical and Modern Chinese further provides in-
sights into historical changes in how writing encodes meaning.

Together with our prior work (Jiang et al., 2024), this study
shows that a library learning-based computational model can
capture the inductive biases underlying the emergence and
evolution of compositional structures in human language. It
emphasizes representational efficiency as a unifying principle
that links combinatorial reuse in logographic forms to system-
atic mappings among form, sound, and meaning. We hope our
work can contribute to theories of efficiency as a design fea-
ture for writing systems, and how writing efficiently conveys
and represents humans’ intuitive understanding of sound and
meaning structures in human languages.
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